在线咨询
免费评估
费用计算
微信扫码体验
电话咨询
分公司电话
400-010-8000
免费咨询电话
400-010-8000
到店咨询
金吉列留学北京总部2
北京市朝阳区建国门外大街8号楼IFC国际财源中心B座15层
010-56836688
《未来简史》说:“人类正逐渐将手中的权利交给自由市场、集体智慧和外部算法,部分原因就在于人类无力处理大量的数据。”现在,我们正在拿回数据的操作权。前不久领英发布了《2021年新兴职位趋势报告》,该报告仔细研究了 covi-19 影响下瞬息万变的中国职场,比较了2020 年 3 月 1 日至 2021 年 2 月 28 日与上一年同期相比增长最快的职位,总结了正在兴起的职业技能需求。
报告显示的总体趋势是:数字化转型的提速和新兴技术的赋能,大大提高了企业的生产效率,进而驱动产业效率升级,数据具备的天然融合能力又进一步推动了产业的跨界融合。
在该趋势下,企业对具备数字化技能的复合型人才的需求大幅增加。总结这些企业所需的职位特征,有三类职位正处于蓬勃发展的态势:
(a)受 covi-19 影响而迅速兴起的大健康 / 医疗职位;
(b)具有”数字化原生”基因的职位;
(c)将传统行业与数字化融合发展的职位(如人力资源、教育、金融、对外贸易等行业的传统职位)
中国社科院大学经济学院教授认为:从市场角度来看, 拥有数字化基因的职位 (数据工程师、数据分析师、数据科学家等等)代表全新或更高级的消费需求,有更大的发展潜力和更好的发展前景。
数据科学家:21世纪“最性感的职业”
《哈佛商业评论》将数据科学家评为“二十一世纪最性感的职业”,通常我们很难将性感与数字相联系。
性感代表着难以名状的诱惑,和令人向往、想要探索的欲望,这便是数字技术和数字经济发展下,对数据科学家工作抽象又充满创意的描述。
在美国,综合年薪、工作满意度以及在glass oor开放的岗位数目,数据科学家在美国最大的求职网站之一glass oor 美国最佳工作(best jobs in america) 排名, 连续四年稳居第一 ,平均年薪维持在10万美元之上,成为美国最为炙手可热的职业之一。
数据匮乏的岁月已过去,现如今各行各业对数据的需求就如同汽车需要道路。
在聊申请之前,让我们首先明确数据科学究竟研究什么,以及它在我们生活中究竟是如何应用的。
随着互联网的发展,产生了越来越多的数据,而能够有效分析这些数据并将它们应用于商业的人才却极其短缺,在这种趋势下,数据科学专业应运而生。
数据科学(英语:ata science),是一门利用数据学习知识的学科,其目标是通过从数据中提取出有价值的部分来生产数据产品。它结合了诸多领域的理论和技术,包括应用数学、统计、模式识别、机器学习、数据可视化、数据仓库以及高性能计算。
从上图可以看出,数据科学是一门横跨多领域的交叉学科,这些学科包括:计算机科学、数学、统计学、商科以及其他应用领域。
有人说数据是当今世界的石油 ,借助合适的工具,技术,算法,我们可以使用数据并将其转换为独特的业务优势。
而这就是数据科学家们正在做的——
挖掘数据的科学价值,进行数据领域的底层技术研发。
数据科学的应用领域
数据和数据分析已经深深地影响和作用于我们的生活,其在各行各业的应用也极大提高了我们的生活的便利度和产出效率。
政府就可以通过对大数据的不同应用及时高效地监测到问题,为制定相关方针政策服务。
比如基于大数据分析,找出雾霾的根源在哪里,是因为车辆尾气还是因为钢厂排放,堵车问题的解决是通过修路还是改变出行方式,或是建立副中心,而不仅仅是通过一刀切的限号方式来解决。又比如美国国家税务局已经在它的返回审查程序中集成了大数据分析功能:通过分析大量的数据,美国国家税务局能够检查、预防和处理避税和诈骗行为。
数据科学家是利用数据创造奇迹的巫师
在商业环境中,一个熟练的数据科学家善于将原始数据转化为有意义的见解,帮助公司使用数据来驱动决策。
例如,企业要进行采购决策。
那么企业需要对客户支付进行供应链分析。在企业的内部交易系统中有购买订单、发票和支付记录,数据库中还有供应商的详细信息等。数据科学家能够创建一个程序,它不仅可以显示订单频率和付款时间的趋势,还能通过建立预测模型,来为可能有类似商业行为的团体解读季节性趋势(即在特定时间段内相对稳定的起伏),通过对季节性趋势的解读,数据科学家可以预测消费者对库存商品的购买行为,并基于客户支付信息预测相关的采购预算。
但数据科学家不会就此止步,因为采购并不仅是季节性趋势这么简单。
除了通过企业内部资源获取营销数据,为了优化模型,他们还会利用网络数据爬取工具来获得一些常规的经济指标,如就业率和国内生产总值,以及一些特定的指标:如供应商的年度和季度报告、社交媒体的普遍情绪,甚至针对某一新闻事件进行监测。
他们从宏观到微观,通过建立模型,来获取任何可能影响消费者购买行为的数据,从而提供具有科学依据,富有说服力的商业建议。
首先我们要弄清楚究竟哪些人适合申请数据科学硕士,以及数据科学教应具备哪些基本能力要求,同学们可以根据自己的情况进行评估,究竟你是否适合申请此专业的研究生。
哪些专业背景适合申请数据科学专业?
首先,本科是计算机科学 (computer science)的同学,无异最符合大多数数据科学项目申请条件的,因为大多数数据工作都是通过编程和数据库的相关手段进行的,并要求学过统计、微积分、高级语言,如哈佛大学对于mss(master of science in ata science)的本科背景要求是:希望有微积分、线性代数,概率和统计等相关课程,能使用至少1种编程语言,例如python或r,了解计算机科学概念。
其次,本科背景是统计、数学或应用数学,且有一定编程基础的同学也可以申请,这都是很好的匹配专业。
最后,商科背景出身,但量化背景较强的商科专业 ,比如金工,但又希望能选择一个stem(science,technology,engineering,mathematics)专业的同学,那数据科学专业显然也是个非常好的选择。
所以说,如果你有比较强的编程背景,又有比较好的数理基础,那你就很有竞争力;而纯商科背景的同学,如果没有强的量化背景、完全不懂编程,那么可以考虑数据科学(ata science)和商业分析(business analytics)混合申请,因为后者相较数据科学更加偏商科,多开在商学院,对商科背景接纳程度大很多。
数据科学家是什么人?
数据是冰冷的,只有专业人才能使数据有生命有价值
怎样才是数据科学领域的专业人才?什么是数据科学家?
google首席经济学家、加州大学伯克利分校教授哈尔·范里安(hal varian),在2008年10月与麦肯锡总监james manyika先生的对话中,曾经讲过下面一段话:
“我总是说,在未来10年里,最有意思的工作将是统计学家。人们都认为我在开玩笑。但是,过去谁能想到电脑工程师会成为20世纪90年代最有趣的工作?在未来10年里,获取数据——以便能 理解它、处理它、从中提取价值、使其形象化、传送它 能力将成为一种极其重要的技能,不仅在专业层面上是这样,而且在教育层面(包括对中小学生、高中生和大学生的教育)也是如此。由于如今我们已真正拥有实质上免费的和无所不在的数据,因此,与此互补的稀缺要素是理解这些数据并从中提取价值的能力。”
范里安教授在当初的对话中使用的是statisticians(统计学家)一词,虽然当时他没有使用数据科学家这个词,但这里所指的,正是现在我们所讨论的数据科学家。
朝乐门在《数据科学理论与实践》中的定义为:
数据科学家是将现实问题映射或转换为数据问题之后,主要采用数据科学的理念、原则理论、方法、技术、工具,通过将数据尤其是大数据转换为知识和智慧的过程中,为解决 "现实世界中的问题" 提供直接指导、依据或参考的高级专家。
简单的概括,就是能用数据讲故事,能用数据解决问题的人。
数据科学家做什么?
有研究人员以inee、linkeln和百度百聘为数据来源,搜集了2020年3月18至5月28期间,中国、美国、英国、德国、加拿大、日本、澳大利亚和韩国八个国家五种语言的数据科学家招聘公告,挑选出206则具有代表性的招聘公告,提炼出数据科学家的能力要求和岗位职责。
这些职位的主要岗位职责包括:
(a)提出以数据为中心的解决方案;
(b)从海量数据中发现有价值的信息;
(c)面向具体业务的算法和模型研发;
()进行假设检验与试验设计;
(e)数据治理与数据质量控制;
(f)数据产品的研发及基于数据的传统产品的创新;
(g)跨部门和跨领域合作。
具体的能力可以分为与数据科学相关的能力要求以及综合能力要求两类:
数据直接相关的包括计算机科学、数学、统计、数据挖掘、数据可视化、数据管理等等具体能力。
上述与数据非直接相关,但是是数据科学家所需要具备的素质,同时也是企业招聘中所非常看重的能力:包括团队工作中的沟通与合作能力、解决问题的能力、自学能力、细节导向型、抗压和应变能力、领导能力和 数据科学家的3c精神。
所谓数据科学家的3c精神,包括解决问题的原创性﹙creative﹚、思考问题的批判性﹙critical﹚和提出问题的好奇性﹙curious﹚。
部分招聘公告将数据科学家的3c精神称为 "喜欢有挑战的工作" ,且特别提到上述三种精神的“天生"特点,强调应聘人才 对数据问题的热爱和天生才华。
如stanley black & ecker公司要求数据科学家要有天生的好奇心以及对实证研究和解决问题的强烈热情;loblaw companies limite要求数据科学家应具备精湛的分析和批判性思维能力。
这和托马斯和帕蒂尔在《哈佛商业评论》杂志上发表的《数据科学家:21世纪最性感的职业﹙ata scientist: the sexiest job of the 21st century﹚》文章中数据科学家应该具备的基本知识结构与综合能力高度匹配: 他们沉浸在大数据中时能有价值发现,会编写程序代码,永远对数据充满好奇心,并且具备数据分析和交流沟通能力。
the ata science venn iagram by rew conway
自我评估:你适合申请s研究生吗?
作为该专业的申请者,可以反思一下,你是否符合这些特征:
(a)热爱数学,具有良好的数学、统计学基础
(b)敏锐的数据嗅觉,可以不仅可以数据视觉化更能数据“故事化”
(c)优秀的语言学习者,当然“计算机语言”也是其中一种
()充满好奇心,喜欢有挑战性的工作
(e)有能力把想法与其他人去交流 ﹙不是用数学的语言介绍,而是用商业的语言给别人进行交流沟通﹚
如果答案是yes,那么恭喜你,你将会是潜在的优秀数据科学家。
据统计,数据科学家一般都具有高学历—— 88%的数据科学家至少是硕士学位 ,46%的数据科学家是博士学位。
这表明想要成为一名数据科学家需要非常好的教育背景,那么取得此相关专业的硕士以上的学位将会是必须,接下来你只需静下心来,了解关于数据科学研究生硕士申请的更多信息,并做好相应的准备,稳扎稳打,朝着你的目标前行。
在过去10年里,美国大学陆续开设200多个与数据科学有关的硕士专业。尤其是近几年,开设了数据科学、商业分析和数据分析专业的学校数量更是井喷:
可以看到2013年后,开设数据科学硕士项目的美国大学保持持续增长。目前top 50院校中开设数据科学硕士专业的学校达21所。
美国的数据科学硕士专业一般开设在计算机学院、工程学院、数学、统计学院或者系下。设立在多个学院是因为这个专业本身属于交叉学科,包含了计算机,统计,数学,和应用领域的学科。
如果要说区别的话,计算机学院的培养方案当中,可以更多利用学校计算机的资源。
比如卡耐基梅隆大学的数据科学专业开设在计算机学院下,学生除了5个核心课程外,其余的课程可以在卡内基梅隆的计算机学院下开设的超过600门课中进行选修,当然项目对学生的计算机背景会有相对更为严格要求,卡内基梅隆的数据科学硕士要求其必须在项目开始前完成相应的计算机系统的课程,包括对往年录取学生的背景分析,具有更强计算机背景(包括本科专业,以及计算机实习或者项目经验)会更受招生官的青睐。
数学学院的培养方案,多从数学学科出发,更注重的数学方面的理论基础, 因为院系的师资力量就决定了课程设置。
例如纽约大学的数据科学硕士(master’s in ata science)就是设立在纽约大学数据科学中心下(the center for ata science ,简称cs),cs附属在著名的库郎数学科学研究所 ,对申请者数学背景(本科数学科目gpa、gre数学部分的成绩)较为看重,往年录取者gre数学平均分在168分以上。
总的来说,数学给到大数据的理论性支撑会更多,而具体的大数据平台开发等,需要依赖于计算机语言去实现,比如说java、python等。
大家在进行院校和项目选择时可综合考虑院校的师资力量、课程设置、就业等等各方面因素去抉择。
有研究人员针包括加州大学伯克利分校、纽约大学、卡内基美隆大学、哥伦比亚大学在内的授予数据科学硕士学位(master of science in ata science)的18所高校的课程设置进行了研究,针对其课程设置,可以将其分为四类:
①理论类 ,包括数学与统计学原理、数据科学概论、计算机科学概论等基础理论课程;
②技术类 ,包括系统构建、数据计算,以及数据采集、存储、组织、检索、应用等过程所需的技术;
例如机器学习、数据库、数据挖掘和数据建模,旨在帮助学生掌握python/java/pig/hive等编程语言,提高学生应用分布式文件系统工具的能力,提高学生的数据分析能力。
③应用类 ,指数据科学的跨领域应用研究课程;
因为数据科学可用于各个行业,因此方向类课程也是每个学校的特色,例如哥伦比亚大学的mss有开金融量化大数据分析、可持续发展智慧城市大数据分析、生物信息大数据;斯坦佛大学开的数据驱动医疗课程,视觉识别神经网络、地理统计信息等都非常有趣。
④实践类 ,包括课程实验、专题研讨与实用技能培养相关的课程。
北京站
客服专线: 400-010-8000
服务专线: 400-010-8000
北京分公司:北京市朝阳区 建国门外大街永安东里甲3号院B座
友情链接 · 加拿大留学 | 新西兰留学 | 日本留学 | 欧洲留学 | 澳大利亚留学 | 美国留学 | 英国留学 | 韩国留学
©2024金吉列出国留学咨询服务有限公司 版权所有 | 京ICP备05010035号 | 京公网安备11010502038474号 | 出版物经营许可:新出发京零字第朝190057号
信息提交成功!稍后将有专人与您联系。